手机浏览器扫描二维码访问
费马跟梅森说:“我又发现一个有趣的东西?”
梅森习以为常的说:“我知道,你一直在发现很多东西。”
费马说:“我发现一个多边形数。”
梅森说:“那先解释什么是多边形数?”
费马说:“一个圆点只有一个点,所以多边形数为一。
一个三角形数需要在这个点外伸出两个点,所以为多边形数为3,如果再往外延伸,需要再加三个点,得到六个点,多边形数为六。”
一面说,费马一面画出三角形数的图形。
梅森说:“为什么是这样的?你规定了什么?”
费马说:“这个多边形为三角形的时候,点与点直接距离相等。”
梅森说:“然后为10,再然后为15等等。”
费马说:“正确。”
不一会儿两个人还是画出四边形、五边形、六边形的数分别都是:
四边形数为1、4、9、16、25等
五边形数为1、5、12、22、35等
六边形数为1、6、15、28、45等
梅森说:“你这样要做什么?”
费马说:“每一个正整数都可以表示为最多n个n边形数的和。
每一个正整数一定可以表示为不超过三个的三角形数之和、不超过四个的平方数之和、不超过五个的五边形数之和,依此类推。”
梅森说:“原来你还在研究平方数和的一些规律呀!”
费马说:“没错。”
梅森说:“你打个比方,我听听。”
费马说:“两个个三角形数的例子,例如17=10+6+1,4=1+3。
一个众所周知的特例,是四平方和定理,它说明每一个正整数都可以表示为最多四个平方数之和,例如7=4+1+1+1。”
梅森说:“你证明了吗?”
费马说:“证明的事情恐怕要交给后人了。”
拉格朗日在1770年证明了平方数的情况,高斯在1796年证明了三角形数的情况,但直到1813年,柯西才证明了一般的情况。
本书已完结!新书行走的灵气银行已上传,欢迎入坑!灵气可以存储进卡,还可以交易,苏小牧的灵气银行厉害了!...
终是繁华如梦免费阅读全文,终是繁华如梦孟小暖顾擎苍是小说主角,小说终是繁华如梦全文简介我和刘志远从小一起长大,我以为,我爱他,他也爱我。却没想到,有一天,他竟然把我送上了别人的床,沦为玩物。好在,后来我发现,他也没比我高贵。他有个金主,他们刘家一家人,都靠那个女大款养着。...
杜静终于如愿地嫁给了大学里心慕的美男,可是这段浪漫的爱情,却葬送在了一个未出世的孩子身上。 一觉醒来,她回到了自己的前世,没有金手指,没有一个至高无上的爹,最重要的是原主还是美男的未婚妻。 直到西辰入侵,先皇驾崩,美男登位。 他在宫中守孝,她在宫外与人暗度陈仓,到头来她才发现,良人并非良人,可是已经不能从头再来...
一次意外,使得王嘉洛穿越到了一个科技树被彻底点歪了的怪异世界,在这个世界之中,有着各种各样强大无比的变异兽,而人类唯一能够用来和其对抗的,就是那些同样强大的超级坦克。...
符者,天地之真信,人皆假之以朱墨纸笔。我丁勉仅一点灵光,通天彻地,可虚空,可水火,可瓦砾,可草木,可饮食,可有可无,可通可变,谓之天道!...
女主超级强大,冷酷腹黑,一笑百媚生,一怒沧海寒。她,侯府小姐,却是全皇城的笑柄,爹爹不疼舅舅不爱,连奴仆都能肆意欺辱,最后累死病榻。冰冷的双眸睁开,她已是天下第一杀手,翻云覆雨霸气凌九霄!当废物庶女再次展露锋芒,惊绝万古,艳压群芳,引天下豪杰竞折腰他是优雅的王者,天生贵胄,飘逸不群,民心所向,乱世相逢,自此天上人间。这一世没有谁能够阻挡她靠近他的脚步,皇若阻,则掀翻这皇,天若拦,便逆了这天!(情节虚构,切勿模仿)...